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Abstract 

This paper reports an experimental investigation of the 

characteristics of local dissipation length-scale field  in turbulent 

(round and square) jets with various jet-exit Reynolds numbers. 

Results reveal that the probability density function (PDF) of , 

denoted by Q(), in the central fully-turbulent region, is 

insensitive to initial flow conditions and the departure from 

anisotropy. Excellent agreement is demonstrated with distributions 

previously measured from pipe flow and Direct Numerical 

Simulation (DNS) calculated from box turbulence. In the shear 

layer where the flow is not fully turbulent, Q() exhibits higher 

probabilities at small  and the PDFs of velocity increments Lu 

across the integral length scale L are found to have exponential 

tails, suggesting the increased level of small-scale intermittency at 

these scales. This feature may come from the large-scale 

intermittency induced by the engulfment in the shear layer. In 

addition, the influence of the mean shear rate and Reynolds 

number on Q() is negligible. Therefore, the current results 

indicate that the smallest-scale fluctuations in fully turbulence are 

universal, but depend on the large-scale intermittency not being 

fully turbulent. 

Introduction  

Turbulence is characterized by velocity fluctuations on a wide 

range of scales and frequencies. In the classical theory of 

turbulence, the turbulent kinetic energy transfers continuously 

from large to small scales, and would end at the smallest length 

scale of turbulence, known as the Kolmogorov dissipation scale K 

 (3/<>)1/4. Here,  is the kinematic viscosity of the fluid and 

<> is the mean energy dissipation rate, which equals to the 

average flux of energy from the energy-containing large-scale 

eddies down to the smallest ones in the case of statistically 

stationary turbulent fluid motion. However, the dissipation field  

(x,t) = (/2)(iuj + jui)2 is driven by fluctuations of velocity 

gradients whose magnitudes exhibit intense spikes in both space 

and time, resulting in spatially intermittent regions of high 

turbulent dissipation within a turbulent flow field. Here, the 

variable ui is the fluctuating velocity. The Kolmogorov dissipation 

length K is obtained from <> that does not account for the 

strongly intermittent nature of the dissipation rate field.  

To examine the intermittency of  (x,t) , Paladin and Vulpiani [1] 

put forward the idea of a local dissipation length scale . A local 

Reynolds number 
Re /u   

 is of order 1, where u = 

u(x+) - u(x) is the longitudinal velocity increment over a 

separation of . This local Reynolds number means that the inertial 

force (u)2/ and the viscous force  
u /2 are local and 

instantaneously balanced. On the dissipation scale  all 

contributions from pressure, advection and the dissipation terms 

are assumed to be of the same order [2]. Physically,  can be 

interpreted as the instantaneous cut-off scale where viscosity 

overwhelms inertia. To capture the dynamics of the dissipation 

structures, the continuous distribution of dissipation scales 

represented by its probability density function (PDF), Q(), was 

also theoretically (e.g., [2-5]) and numerically (e.g., [6, 7]) 

investigated. Using the assumption that the energy flux toward 

small scales sets up at the integral length-scale L and the PDF of 

velocity increments Lu ( u(x+L) - u(x)) across the integral length 

scale L is close to Gaussian, Yakhot derived an analytical form for 

Q() by applying the Mellin transform to the structure function 

exponent relationships for moments of u within the range 0 <  

< L.  

Bailey et al. [8] experimentally obtained Q() using turbulent pipe 

flow over a wide range of Reynolds number. Their results showed 

reasonable agreement with theoretical predictions and with those 

from high resolution numerical simulations of homogeneous and 

isotropic box turbulence [6], which suggests a universal behavior 

of the smallest-scale fluctuations around the Kolmogorov 

dissipation scale. To test the universality of the smallest-scale 

fluctuations in different flows, Zhou and Xia [9, 10], and Qiu et al. 

[11] investigated the Q() in Rayleigh–Bénard convection and 

Rayleigh-Taylor turbulence, respectively. Their results revealed 

that the distributions of  are indeed insensitive to large-scale 

inhomogeneity and anisotropy of the system, and confirmed that 

the small-scale dissipation dynamics can be described by the same 

models developed for homogeneous and isotropic turbulence. 

However, the exact functional form of Q() is not universal with 

respect to different types of flows. Recently, Bailey et al. [12] 

examined the Re and mean shear dependence of Q() for channel 



flow and found that much of the previously observed spatial 

dependence can be attributed to how the results are normalized. 

Although the properties of Q() have been investigated in several 

types of flows, these ideas have not been generalized for turbulent 

jet flows, which are widely used in various industrial mixing 

processes ([13-16]). In jet flows, the ambient fluid is engulfed into 

the main jet, resulting in “large-scale intermittency” or “external 

intermittency”, which is related to the turbulent/non-turbulent 

interfaces [17, 18]. The large-scale intermittency was found to 

have stronger influence on the spectral inertial-range exponent 

than the mean shear rate. In this context, the present study 

investigates: (1) the properties of local dissipation scales in the 

centreline and in the shear layer of two jet flows, (2) the properties 

of large-scale velocity boundary condition in jet flows, and (3) the 

effect of large-scale intermittency on local dissipation scales in 

turbulent jets.   

Description of the experiments 

Experimental details for the round and square jets are given in, and 

the reader is directed to, Refs [13] and [19], respectively. Here a 

brief overview is provided. The round jet was generated from a 

smooth contraction nozzle with a diameter of De = 2 cm while the 

square jet issued from a square duct of dimensions 2.5 cm  2.5 

cm  2 m, with the nominal opening area A = 6.25 cm2 and the 

equivalent diameter De [ 2(A/)1/2] ~ 2.82 cm. For the round jet, 

the exit velocity Uj = 3 ~ 15 m/s, which corresponds to Re  6750 

~ 20100; and for the square jet, Uj = 4.2 ~ 26.4 m/s and Re = 8103 

~ 5104. For both jets, the streamwise velocity was measured using 

single hot-wire anemometry.  

The properties of small-scale turbulence were obtained using the 

digital filtering high-frequency noise scheme proposed by Mi et al. 

[20]. The dissipation and mean-square fluctuation derivatives were 

corrected following Hearst et al. [21]. The present hotwire probe 

has a limited resolution due to its finite spatial dimensions and 

temporal response. Specifically, its resolution was determined by 

the wire diameter dw = 5 m and effective length w  1 mm, plus 

its response frequency and sampling rate during measurements. 

Note that the ratio w/dw  200 is required so that both a nearly 

uniform temperature distribution in the central portion of the wire 

and a high sensitivity to flow velocity fluctuations can be achieved 

[22]. The present study corrected the spatial attenuation of the 

single wire due to w  1 mm using the procedure of Wyngaard 

[23], which was developed in spectral space to account for the 

integration effect on Fourier components of the velocity.  

The present measurements consider the radial distributions of the 

local dissipation and PDFs of the integral length scale. These span 

0 < y/y1/2 <1.7, which introduces some large scale intermittency 

into the signals. It has been demonstrated by Sadeghi et al.[24] that 

for y/y1/2 >1, data obtained (and suitably corrected as above) using 

a stationary hot wire depart from those obtained in the same flow 

using a flying hot wire. The PDFs of local dissipation scales were 

calculated from each velocity time series using the following 

procedure, which is identical to that described in Refs [7-9].  

Presentation and Discussion of Results 

(1) PDFs of local dissipation scales and velocity increments 

along the centreline 

The PDFs of local dissipation scale obtained on the jet centerline 

at x/De = 1, 5 and 30 for both the round and square jets for all the 

Reynolds numbers are presented in Figure 1 (a) and (b), where 

Q() is normalized by 0 = LReL
-0.72 [8, 9]. Here, ReL is the 

Reynolds number based on the integral length scale L, i.e., ReL = 

<ux(x+L) - ux(x)2>1/2L/.  

The distributions obtained in the near and far field regions of the 

jet flows coincide very well with each other over all measured 

scales. Note that the round jet was generated from a smooth 

contraction nozzle while the square jet issued from a long pipe, 

i.e., their initial conditions are quite different. The agreement is 

independent of nozzle type and exit Reynolds number. This result 

is unexpected and surprising for many reasons.  

It is well known that the vorticity layer arising from the nozzle 

inner wall becomes unstable, forming Kelvin–Helmholtz waves 

and then forming vortex rings that convect downstream. These 

organized vortex rings eventually break down into more complex 

coherent structures within a few diameters of the jet nozzle (x/De 

<5). As the flow develops downstream, the fluid entrainment 

becomes more stochastic in the central flow region, where 

incoherent small-scale turbulence plays a critical role, than in the 

outer region, where large-scale coherent motion dominates. As a 

result, the turbulence approaches near isotropy along the jet 

centreline in the far-filed. According to the previous studies [17, 

22], both the large-scale and small-scale turbulent statistics (e.g., 

mean velocity decay, turbulent intensity, mean energy dissipation 

rate, Kolmogorov scale) in the two jets should behave somewhat 

differently. However, the centerline Q() of jet flows appears to 

be independent of initial conditions. That all data agree with those 

from the centerline of the pipe flow of Bailey et al. [6] tends to 

reinforce the universality of the distribution of Q(). 

 

Figure 1 Centerline PDFs of the local dissipation scale obtained at 

x/De = 1, 3 and 30 in (a) the round jet and (b) the square jet for all 

the Reynolds numbers. For clarity, results for the two high 

Reynolds number are shifted upward by one and two decades, 

respectively. Results from the centreline of pipe flow [8] at Re = 

24000 are also included.  

In theoretical approaches [2] and numerical simulations of 

isotropic turbulence [6, 7], it is usually assumed that the PDF of 

velocity increments Lu ( u(x+L) - u(x)) across the integral length 

scale L are Gaussian distributed, i.e., P(Lu) ~ exp(-Lu2/2). Such 

an assumption of Gaussianity has been verified on the centreline 

of jet flows. Figure 2 presents P(Lu) measured along the centreline 

of the two jets. It maybe noted that the tails of the PDFs display 

slight lack of adherence to the Gaussian, which in the case of the 

round jet maybe due to the Re being on the cusp of reaching fully 

developed turbulence, as encapsulated in the mixing transition 

argument [15, 25].  
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Figure 2 PDFs of Lu = u(x+L) - u(x) on the centreline for x/De = 

1, 5 and 30 for (a) the round jet and (b) the square jet at different 

Re. Gaussian distributions are also added for reference. 

(2) PDFs of local dissipation scales and velocity increments 

across the shear layer 

Figures 3 (a) and (b) present the log-log plots of Q() measured at 

x/De = 30 and at various lateral locations across the shear layer at 

the maximum Re considered of the two jets. The PDFs from all 

measurement locations collapse well for /0 ≥ 3. However, 

moving beyond y/y1/2  0.9, for a given value of /0 indicates 

increased values of Q(). This indicates the enhanced velocity 

gradients at these scales and hence is a manifestation of the 

increased level of small-scale intermittency.  

Comparison is also made in Figure 3 between the results of present 

jet flows, the box turbulence[6], pipe flow[8], Rayleigh–Bénard 

convection [9] and theoretical distribution [2]. There is a very good 

agreement between Q() in the central “inner” layer of jet flows ( 

y/y1/2 < 0.9 ) and the results of pipe flow and box turbulence. 

However, the Q() measured at y/y1/2 > 0.9 display higher 

probabilities at small  with increasing y/y1/2.  

 

Figure 3. Measured PDFs of the local dissipation scales in the 

shear layer of the (a) round jet and (b) square jet for Re = 20100 

and 50000, respectively. For comparison, the results from the box 

turbulence[6], pipe flow[8], Rayleigh–Bénard convection [9] and 

theoretical distribution [2] are also displayed. 

Figure 4 shows P(Lu) measured at x/De = 30 in the shear layer of 

the two jets. The measured PDFs of Lu at y/y1/2 < 0.9 are observed 

to be closely Gaussian, i.e., P(Lu) ~ exp(-Lu2/2), which was also 

observed by Renner et al. [26]. However, at y/y1/2 > 0.9, the PDFs 

of Lu gradually exhibit exponential tails, indicating a significant 

probability for the existence of much larger values than its root 

mean square value. Qualitatively, the measured wings can be 

approximated by stretched exponentials P(Lu) ~ exp(-Lu). 

Such exponential distribution of P(Lu) is also observed in 

Rayleigh–Bénard convection [9].  

 

Figure 4. PDFs of Lu = u(x+L) - u(x) in (a) the round jet at Re = 

20100 and (b) the square jet at Re = 50000. The PDFs are 

normalized to their respective standard deviations and shifted in 

the vertical direction for clarity of presentation. Gaussian and 

exponential distributions are shown for reference.  

(3) Effect of large-scale intermittency and mean shear on PDFs 

of local dissipation scales and velocity increments 

To understand the variation of P(Lu) and Q() in the shear layer 

of the two jets, the large-scale intermittency factor  ( ≡ the fraction 

of time when the flow is fully turbulent) and mean shear S 

(≡U/y) are considered. The turbulent energy recognition 

algorithm (TERA) method proposed by Falco and Gendrich [27] 

was applied to estimate the intermittency factor from the velocity 

signals of the jets. Figure 5 indicates that   1 at 0 < y/y1/2 < 0.9, 

the flow is fully turbulent in the jet central region. In the same 

region, the distributions of Q() collapse with those in pipe flow 

[8] and box turbulence [6], see Figure 3. In addition, the P(Lu) is 

nearly Gaussian for 0 < y/y1/2 < 0.9, see Figure 4. This means that 

the exact function for Q() is probably universal and P(Lu) is 

nearly Gaussian in the fully turbulennt regions of the jets.   

Figure 5 also demonstrates that the value of  decreases quickly 

from 1 to 0 as y/y1/2 increases beyond 0.9, wherein the flow is not 

fully turbulent as non-turbulent ambient flow is engulfed into the 

jet. The interfaces between the non-turbulent and turbulent regions 

in shear flows are investigated recently [28-30]. The most 

important feature of this region is the continuous exchange that 

occurs locally at the interface that is essential for the transport of 

heat, mass, and momentum between the irrotational surrounding 

region and the fully turbulent region of the jet. Therefore, the 

phenomenon of Q() presenting higher probabilities at small  

(Figure 4) and P(Lu) exhibiting exponential tails (Figure 5) may 

due to the engulfment induced large-scale intermittency.  

 

Figure 5 Radial profiles of normalized mean velocity U/Uc, the 

intermittency factor , and mean shear S* at x/De = 30 of (a) the 

round jet and (b) square jet. The  data of Mi and Antonia [17] 

are included for comparison.  

To further investigate the effect of the large-scale intermittency on 

local dissipation scales, non-turbulent signals are identified and 

removed from the original velocity signals using the 

aforementioned TERA algorithm. Samples of the original signals 

are provided in Figure 6. 

 

Figure 6 Plots of (a) original velocity signals, and (b) velocity 

signals excluding the non-turbulent parts using TERA method in 

the shear layer of the square jet at Re = 50000. The plots for 

y/y1/2=0 and y/y1/2=1.1 are shifted 1 and 0.5, respectively. 
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Figure 7 The PDFs of the local dissipation scales estimated from 

the velocity signals excluding the non-turbulent parts in the shear 

layer of (a) the round jet and (b) square jet for Re = 20100 and 

50000, respectively. The data from pipe flow [8] are also added. 

The revised PDFs of , estimated from the velocity signals 

excluding the non-turbulent signals, are presented in Figure 7. In 

Figure 7, it is noted that the Q() at small  due to the removal of 

the non-tubulent portion of the signal is lower than the original 

distributions and approach to those results obtained in the 

centreline of the two jet flows and pipe flow. 

Conclusions 

The present study has investigated the characteristics of local 

dissipation scale field  in turbulent round and square jets based 

on hot-wire measurements. From the above analysis we can induce 

that the non-turbulent ambient fluid engulfed into main jets causes 

large-scale intermittency, due to which the large-scale boundary 

condition, i.e., P(Lu), exhibits exponential tails. However, P(Lu) 

being close to Gaussian is a principle assumption used in previous 

theoretical and observed in the centreline of the present jet flows. 

Therefore, Q() shows discrepancy between the shear layer and 

centerline of jet flows. The increased level of small-scale 

intermittency in the shear layer of jet flows may due to the 

presence of interface between the turbulence/non-turbulence 

regions. The excellent agreement of Q() among the centerline of 

jet flows, pipe flow and box turbulence indicates that smallest-

scale fluctuations in fully turbulence are universal, independent of 

turbulent intensity and isotropy.   
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